澳门新葡亰553311b > 新葡亰编程 > python进阶(二) 多进程+协程

python进阶(二) 多进程+协程
2019-12-15 04:12

      协程有什么好处呢,协程只在单线程中执行,不需要cpu进行上下文切换,协程自动完成子程序切换。

七、socketserver实现并发

基于TCP的套接字,关键就是两个循环,一个连接循环,一个通信循环。

SocketServer内部使用 IO多路复用 以及 “多线程” 和 “多进程” ,从而实现并发处理多个客户端请求的Socket服务端。即:每个客户端请求连接到服务器时,Socket服务端都会在服务器是创建一个“线程”或者“进程” 专门负责处理当前客户端的所有请求。

socketserver模块中的类分为两大类:server类(解决链接问题)和request类(解决通信问题)

server类:

澳门新葡亰网站所有平台 1

server类

request类:

澳门新葡亰网站所有平台 2

request类

线程server类的继承关系:

澳门新葡亰网站所有平台 3

线程server类的继承关系

进程server类的继承关系:

澳门新葡亰网站所有平台 4

进程server类的继承关系

request类的继承关系:

澳门新葡亰网站所有平台 5

request类的继承关系

以下述代码为例,分析socketserver源码:

ftpserver=socketserver.ThreadingTCPServer(('127.0.0.1',8080),FtpServer)
ftpserver.serve_forever()

查找属性的顺序:ThreadingTCPServer --> ThreadingMixIn --> TCPServer->BaseServer

  1. 实例化得到ftpserver,先找类ThreadingTCPServer__init__,在TCPServer中找到,进而执行server_bind,server_active
  2. ftpserver下的serve_forever,在BaseServer中找到,进而执行self._handle_request_noblock(),该方法同样是在BaseServer
  3. 执行self._handle_request_noblock()进而执行request, client_address = self.get_request()(就是TCPServer中的self.socket.accept()),然后执行self.process_request(request, client_address)
  4. ThreadingMixIn中找到process_request,开启多线程应对并发,进而执行process_request_thread,执行self.finish_request(request, client_address)
  5. 上述四部分完成了链接循环,本部分开始进入处理通讯部分,在BaseServer中找到finish_request,触发我们自己定义的类的实例化,去找__init__方法,而我们自己定义的类没有该方法,则去它的父类也就是BaseRequestHandler中找....

澳门新葡亰平台网址大全,源码分析总结:
基于tcp的socketserver我们自己定义的类中的

  • self.server 即套接字对象
  • self.request澳门新葡亰网站所有平台, 即一个链接
  • self.client_address 即客户端地址

基于udp的socketserver我们自己定义的类中的

  • self.request是一个元组(第一个元素是客户端发来的数据,第二部分是服务端的udp套接字对象),如(b'adsf', <socket.socket fd=200, family=AddressFamily.AF_INET, type=SocketKind.SOCK_DGRAM, proto=0, laddr=('127.0.0.1', 8080)>)
  • self.client_address即客户端地址。
#coding=utf-8
from multiprocessing import Process
import gevent
#from gevent import monkey; monkey.patch_socket()
#用于协程的了程序
def yield_execFunc(x):
    print('______________%s'%x)


#yield_clist决定协程的数量
#开始协程操作
def yield_start(yield_clist):
    task=[] #用来存储协程
    for i in yield_clist:
        task.append(gevent.spawn(yield_execFunc,i))

    gevent.joinall(task) #执行协程

if  __name__=="__main__":
    list1=[1,2,3,4,5,6,7,8,9,10] #元素个数决定开起的协程数量
    list2=[1,2,3,4,5,6,7,8,9,10]
    list3=[1,2,3,4,5,6,7,8,9,10]
    process_list =[list1,list2,list3] #元素个数决定进程数量
    for plist in process_list:
        p = Process(target=yield_start,args=(plist,))
        p.start()

通过IO多路复用实现同时监听多个端口的服务端

示例一:

# 示例一:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author : Cai Guangyin

from socket import socket
import select

sock_1 = socket()
sock_1.bind(("127.0.0.1",60000))
sock_1.listen(5)

sock_2 = socket()
sock_2.bind(("127.0.0.1",60001))
sock_2.listen(5)

inputs = [sock_1,sock_2]

while True:
    # IO多路复用
    # -- select方法,内部进行循环操作,哪个socket对象有变化(连接),就赋值给r;监听socket文件句柄有个数限制(1024个)
    # -- poll方法,也是内部进行循环操作,没有监听个数限制
    # -- epoll方法,通过异步回调,哪个socket文件句柄有变化,就会自动告诉epoll,它有变化,然后将它赋值给r;
    # windows下没有epoll方法,只有Unix下有,windows下只有select方法
    r,w,e=select.select(inputs,[],[],0.2)  #0.2是超时时间
        #当有人连接sock_1时,返回的r,就是[sock_1,];是个列表
        #当有人连接sock_2时,返回的r,就是[sock_2,];是个列表
        #当有多人同时连接sock_1和sock_2时,返回的r,就是[sock_1,sock_2,];是个列表
        #0.2是超时时间,如果这段时间内没有连接进来,那么r就等于一个空列表;
    for obj in r:
        if obj in [sock_1,sock_2]:

            conn, addr = obj.accept()
            inputs.append(conn)
            print("新连接来了:",obj)

        else:
            print("有连接用户发送消息来了:",obj)
            data = obj.recv(1024)
            if not data:break
            obj.sendall(data)

客户端:

# -*- coding:utf-8 -*-
#!/usr/bin/python
# Author : Cai Guangyin

from socket import *

tcpsock = socket(AF_INET,SOCK_STREAM)   #创建一个tcp套接字
tcpsock.connect(("127.0.0.1",60001))     #根据地址连接服务器

while True:   #客户端通信循环
    msg = input(">>: ").strip()   #输入消息
    if not msg:continue           #判断输入是否为空
        #如果客户端发空,会卡住,加此判断,限制用户不能发空
    if msg == 'exit':break       #退出
    tcpsock.send(msg.encode("utf-8"))   #socket只能发送二进制数据
    data = tcpsock.recv(1024)    #接收消息
    print(data.decode("utf-8"))

tcpsock.close()

以上服务端运行时,如果有客户端断开连接则会抛出如下异常:

澳门新葡亰网站所有平台 6

异常

澳门新葡亰553311b,      这里没有使用yield协程,这个python自带的并不是很完善,至于为什么有待于你去研究了。

1.3.5 线程相关的其他方法补充

Thread实例对象的方法:

  • isAlive():返回纯种是否是活跃的;
  • getName():返回线程名;
  • setName():设置线程名。

threading模块提供的一些方法:

  • threading.currentThread():返回当前的线程变量
  • threading.enumerate():返回一个包含正在运行的线程的列表。正在运行指线程启动后、结束前,不包括启动前和终止后。
  • threading.activeCount():返回正在运行的线程数量,与len(threading.enumerate())有相同结果。
from threading import Thread
import threading
import os

def work():
    import time
    time.sleep(3)
    print(threading.current_thread().getName())


if __name__ == '__main__':
    #在主进程下开启线程
    t=Thread(target=work)
    t.start()

    print(threading.current_thread().getName()) #获取当前线程名
    print(threading.current_thread()) #主线程
    print(threading.enumerate()) #连同主线程在内有两个运行的线程,返回的是活跃的线程列表
    print(threading.active_count())  #活跃的线程个数
    print('主线程/主进程')

    '''
    打印结果:
    MainThread
    <_MainThread(MainThread, started 140735268892672)>
    [<_MainThread(MainThread, started 140735268892672)>, <Thread(Thread-1, started 123145307557888)>]
    2
    主线程/主进程
    Thread-1
    '''

 

1.2 创建一个类,并继承Thread类

from threading import Thread
import time
calss Sayhi(Thread):
    def __init__(self,name):
        super().__init__()
        self.name = name
    def run(self):
        time.sleep(2)
        print("%s say hello" %self.name)

if __name__ == "__main__":
    t = Sayhi("egon")
    t.start()
    print("主线程")

      

七、基于UDP的套接字

  • recvfrom(buffersize[, flags])接收消息,buffersize是一次接收多少个字节的数据。
  • sendto(data[, flags], address) 发送消息,data是要发送的二进制数据,address是要发送的地址,元组形式,包含IP和端口

服务端:

from socket import *
s=socket(AF_INET,SOCK_DGRAM)  #创建一个基于UDP的服务端套接字,注意使用SOCK_DGRAM类型
s.bind(('127.0.0.1',8080))  #绑定地址和端口,元组形式

while True:    #通信循环
    client_msg,client_addr=s.recvfrom(1024) #接收消息
    print(client_msg)
    s.sendto(client_msg.upper(),client_addr) #发送消息

客户端:

from socket import *
c=socket(AF_INET,SOCK_DGRAM)   #创建客户端套接字

while True:
    msg=input('>>: ').strip()
    c.sendto(msg.encode('utf-8'),('127.0.0.1',8080)) #发送消息
    server_msg,server_addr=c.recvfrom(1024) #接收消息
    print('from server:%s msg:%s' %(server_addr,server_msg))

模拟即时聊天
由于UDP无连接,所以可以同时多个客户端去跟服务端通信

服务端:

from socket import *

server_address = ("127.0.0.1",60000)
udp_server_sock = socket(AF_INET,SOCK_DGRAM)
udp_server_sock.bind(server_address)

while True:
    qq_msg,addr = udp_server_sock.recvfrom(1024)
    print("来自[%s:%s]的一条消息:33[32m%s33[0m"%(addr[0],addr[1],qq_msg.decode("utf-8")))
    back_msg = input("回复消息:").strip()
    udp_server_sock.sendto(back_msg.encode("utf-8"),addr)

udp_server_sock.close()

客户端:

from socket import *

BUFSIZE = 1024
udp_client_sock = socket(AF_INET,SOCK_DGRAM)
qq_name_dic = {
    "alex":("127.0.0.1",60000),
    "egon":("127.0.0.1",60000),
    "seven":("127.0.0.1",60000),
    "yuan":("127.0.0.1",60000),
}

while True:
    qq_name = input("请选择聊天对象:").strip()
    while True:
        msg = input("请输入消息,回车发送:").strip()
        if msg == "quit":break
        if not msg or not qq_name or qq_name not in qq_name_dic:continue
        print(msg,qq_name_dic[qq_name])
        udp_client_sock.sendto(msg.encode("utf-8"),qq_name_dic[qq_name])

        back_msg,addr = udp_client_sock.recvfrom(BUFSIZE)
        print("来自[%s:%s]的一条消息:33[32m%s33[0m" %(addr[0],addr[1],back_msg.decode("utf-8")))
udp_client_sock.close()

注意:
1.你单独运行上面的udp的客户端,你发现并不会报错,相反tcp却会报错,因为udp协议只负责把包发出去,对方收不收,我根本不管,而tcp是基于链接的,必须有一个服务端先运行着,客户端去跟服务端建立链接然后依托于链接才能传递消息,任何一方试图把链接摧毁都会导致对方程序的崩溃。

2.上面的udp程序,你注释任何一条客户端的sendinto,服务端都会卡住,为什么?因为服务端有几个recvfrom就要对应几个sendinto,哪怕是sendinto(b'')那也要有。

3.recvfrom(buffersize)如果设置每次接收数据的字节数,小于对方发送的数据字节数,如果运行Linux环境下,则只会接收到recvfrom()所设置的字节数的数据;而如果运行windows环境下,则会报错。

基于socketserver实现多线程的UDP服务端:

import socketserver

class MyUDPhandler(socketserver.BaseRequestHandler):
    def handle(self):
        client_msg,s=self.request
        s.sendto(client_msg.upper(),self.client_address)

if __name__ == '__main__':
    s=socketserver.ThreadingUDPServer(('127.0.0.1',60000),MyUDPhandler)
    s.serve_forever()

      协程,又称微线程,纤程。英文名Coroutine。

6.1 ThreadingTCPServer

ThreadingTCPServer实现的Soket服务器内部会为每个client创建一个 “线程”,该线程用来和客户端进行交互。

使用ThreadingTCPServer:

  • 创建一个继承自 SocketServer.BaseRequestHandler 的类
  • 类中必须定义一个名称为 handle 的方法
  • 启动ThreadingTCPServer。
  • 启动serve_forever() 链接循环

服务端:

import socketserver

class MyServer(socketserver.BaseRequestHandler):
    def handle(self):
        conn = self.request
        # print(addr)
        conn.sendall("欢迎致电10086,请输入1XXX,0转人工服务。".encode("utf-8"))
        Flag = True
        while Flag:
            data = conn.recv(1024).decode("utf-8")
            if data == "exit":
                Flag = False
            elif data == '0':
                conn.sendall("您的通话可能会被录音。。。".encode("utf-8"))
            else:
                conn.sendall("请重新输入。".encode('utf-8'))

if __name__ == '__main__':
    server = socketserver.ThreadingTCPServer(("127.0.0.1",60000),MyServer)
    server.serve_forever()  #内部实现while循环监听是否有客户端请求到达。

客户端:

import socket

ip_port = ('127.0.0.1',60000)
sk = socket.socket()
sk.connect(ip_port)
sk.settimeout(5)

while True:
    data = sk.recv(1024).decode("utf-8")
    print('receive:',data)
    inp = input('please input:')
    sk.sendall(inp.encode('utf-8'))
    if inp == 'exit':
        break
sk.close()

      即然说到适合python多线程的,那么什么样的不适合用python多线程呢?

目录

一、开启线程的两种方式
    1.1 直接利用利用threading.Thread()类实例化
    1.2 创建一个类,并继承Thread类
    1.3 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别
        1.3.1 谁的开启速度更快?
        1.3.2 看看PID的不同
        1.3.3 练习
        1.3.4 线程的join与setDaemon
        1.3.5 线程相关的其他方法补充

二、 Python GIL
    2.1 什么是全局解释器锁GIL
    2.2 全局解释器锁GIL设计理念与限制

三、 Python多进程与多线程对比
四、锁
    4.1 同步锁
    GIL vs Lock
    4.2 死锁与递归锁
    4.3 信号量Semaphore
    4.4 事件Event
    4.5 定时器timer
    4.6 线程队列queue

五、协程
    5.1 yield实现协程
    5.2 greenlet实现协程
    5.3 gevent实现协程

六、IO多路复用

七、socketserver实现并发
    7.1 ThreadingTCPServer

八、基于UDP的套接字

每个进程下N个协程,   

一、开启线程的两种方式

在python中开启线程要导入threading,它与开启进程所需要导入的模块multiprocessing在使用上,有很大的相似性。在接下来的使用中,就可以发现。

同开启进程的两种方式相同:

              不是这个样子的,python多线程一般用于IO密集型的程序,那么什么叫做IO密集型呢,举个例子,比如说带有阻塞的。当前线程阻塞等待其它线程执行。

GIL vs Lock

机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 

首先我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据

然后,我们可以得出结论:保护不同的数据就应该加不同的锁。

最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock

详细的:

因为Python解释器帮你自动定期进行内存回收,你可以理解为python解释器里有一个独立的线程,每过一段时间它起wake up做一次全局轮询看看哪些内存数据是可以被清空的,此时你自己的程序 里的线程和 py解释器自己的线程是并发运行的,假设你的线程删除了一个变量,py解释器的垃圾回收线程在清空这个变量的过程中的clearing时刻,可能一个其它线程正好又重新给这个还没来及得清空的内存空间赋值了,结果就有可能新赋值的数据被删除了,为了解决类似的问题,python解释器简单粗暴的加了锁,即当一个线程运行时,其它人都不能动,这样就解决了上述的问题, 这可以说是Python早期版本的遗留问题。

      那么什么是协程呢?

4.4 事件Event

同进程的一样

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其他线程通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手,为了解决这些问题我们使用threading库中的Event对象。

Event对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象,而这个Event对象的标志为假,那么这个线程将会被 一直阻塞直至该 标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被 设置 为真的Event对象,那么它将忽略这个事件,继续执行。

Event对象具有一些方法:
event = threading.Event() #产生一个事件对象

  • event.isSet():返回event状态值;
  • event.wait():如果event.isSet() == False,将阻塞线程;
  • event.set():设置event的状态值为True,所有阻塞池的线程进入就绪状态,等待操作系统高度;
  • event.clear():恢复event的状态值False。

应用场景:

例如,我们有多个线程需要连接数据库,我们想要在启动时确保Mysql服务正常,才让那些工作线程去连接Mysql服务器,那么我们就可以采用threading.Event()机制来协调各个工作线程的连接操作,主线程中会去尝试连接Mysql服务,如果正常的话,触发事件,各工作线程会尝试连接Mysql服务。

from threading import Thread,Event
import threading
import time,random
def conn_mysql():
    print('33[42m%s 等待连接mysql。。。33[0m' %threading.current_thread().getName())
    event.wait()  #默认event状态为False,等待
    print('33[42mMysql初始化成功,%s开始连接。。。33[0m' %threading.current_thread().getName())


def check_mysql():
    print('33[41m正在检查mysql。。。33[0m')
    time.sleep(random.randint(1,3))
    event.set()   #设置event状态为True
    time.sleep(random.randint(1,3))

if __name__ == '__main__':
    event=Event()
    t1=Thread(target=conn_mysql) #等待连接mysql
    t2=Thread(target=conn_mysql) #等待连接myqsl
    t3=Thread(target=check_mysql) #检查mysql

    t1.start()
    t2.start()
    t3.start()


'''
输出如下:
Thread-1 等待连接mysql。。。
Thread-2 等待连接mysql。。。
正在检查mysql。。。
Mysql初始化成功,Thread-1开始连接。。。
Mysql初始化成功,Thread-2开始连接。。。
'''

注:threading.Eventwait方法还可以接受一个超时参数,默认情况下,如果事件一直没有发生,wait方法会一直阻塞下去,而加入这个超时参数之后,如果阻塞时间超过这个参数设定的值之后,wait方法会返回。对应于上面的应用场景,如果mysql服务器一直没有启动,我们希望子线程能够打印一些日志来不断提醒我们当前没有一个可以连接的mysql服务,我们就可以设置这个超时参数来达成这样的目的:

上例代码修改后如下:

from threading import Thread,Event
import threading
import time,random
def conn_mysql():
    count = 1
    while not event.is_set():
        print("33[42m%s 第 <%s> 次尝试连接。。。"%(threading.current_thread().getName(),count))
        event.wait(0.2)
        count+=1
    print("33[45mMysql初始化成功,%s 开始连接。。。33[0m"%(threading.current_thread().getName()))

def check_mysql():
    print('33[41m正在检查mysql。。。33[0m')
    time.sleep(random.randint(1,3))
    event.set()
    time.sleep(random.randint(1,3))

if __name__ == '__main__':
    event=Event()
    t1=Thread(target=conn_mysql) #等待连接mysql
    t2=Thread(target=conn_mysql) #等待连接mysql
    t3=Thread(target=check_mysql) #检查mysql

    t1.start()
    t2.start()
    t3.start()

这样,我们就可以在等待Mysql服务启动的同时,看到工作线程里正在等待的情况。应用:连接池。

      协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用。

1.3.4 线程的join与setDaemon

与进程的方法都是类似的,其实multiprocessing模块是模仿threading模块的接口;

from threading import Thread
import time
def sayhi(name):
    time.sleep(2)
    print('%s say hello' %name)

if __name__ == '__main__':
    t=Thread(target=sayhi,args=('egon',))
    t.setDaemon(True) #设置为守护线程,主线程结束,子线程也跟着线束。
    t.start()
    t.join()  #主线程等待子线程运行结束
    print('主线程')
    print(t.is_alive())

              答案是CPU密集型的,那么什么样的是CPU密集型的呢?百度一下你就知道。

1.3.2 看看PID的不同

from threading import Thread
from multiprocessing import Process
import os

def work():
    print('hello',os.getpid())

if __name__ == '__main__':
    #part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样
    t1=Thread(target=work)
    t2=Thread(target=work)
    t1.start()
    t2.start()
    print('主线程/主进程pid',os.getpid())

    #part2:开多个进程,每个进程都有不同的pid
    p1=Process(target=work)
    p2=Process(target=work)
    p1.start()
    p2.start()
    print('主线程/主进程pid',os.getpid())


'''
hello 13552
hello 13552
主线程pid: 13552
主线程pid: 13552
hello 1608
hello 6324
'''

总结:可以看出,主进程下开启多个线程,每个线程的PID都跟主进程的PID一样;而开多个进程,每个进程都有不同的PID。

执行结果:开了三个进程,每个进程下执行10个协程协作任务

5.2 greenlet实现协程

greenlet是一个用C实现的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换,而不需把这个函数先声明为generator。

安装greenlet模块
pip install greenlet

from greenlet import greenlet
import time

def t1():
    print("test1,first")
    gr2.switch()
    time.sleep(5)
    print("test1,second")
    gr2.switch()

def t2():
    print("test2,first")
    gr1.switch()
    print("test2,second")

gr1 = greenlet(t1)
gr2 = greenlet(t2)
gr1.switch()


'''
输出结果:
test1,first
test2,first   #等待5秒
test1,second
test2,second
'''

可以在第一次switch时传入参数

from greenlet import greenlet
import time
def eat(name):
    print("%s eat food 1"%name)
    gr2.switch(name="alex")
    time.sleep(5)
    print("%s eat food 2"%name)
    gr2.switch()

def play_phone(name):
    print("%s play phone 1"%name)
    gr1.switch()
    print("%s play phone 1" % name)

gr1 = greenlet(eat)
gr2 = greenlet(play_phone)
gr1.switch(name="egon")  #可以在第一次switch时传入参数,以后都不需要

注意:greenlet只是提供了一种比generator更加便捷的切换方式,仍然没有解决遇到I/O自动切换的问题,而单纯的切换,反而会降低程序的执行速度。这就需要用到gevent模块了。

C:Python27python.exe D:/weixin/temp/yield_tmp.py
______________1
______________2
______________3
______________4
______________5
______________6
______________7
______________8
______________9
______________10
______________1
______________1
______________2
______________2
______________3
______________3
______________4
______________4
______________5
______________5
______________6
______________6
______________7
______________7
______________8
______________8
______________9
______________9
______________10
______________10

Process finished with exit code 0

4.2 死锁与递归锁

所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态,或系统产生了死锁。这此永远在互相等待的进程称死锁进程

如下代码,就会产生死锁:

from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock()

class MyThread(Thread):
    def run(self):
        self.func1()
        self.func2()
    def func1(self):
        mutexA.acquire()
        print('33[41m%s 拿到A锁33[0m' %self.name)

        mutexB.acquire()
        print('33[42m%s 拿到B锁33[0m' %self.name)
        mutexB.release()

        mutexA.release()

    def func2(self):
        mutexB.acquire()
        print('33[43m%s 拿到B锁33[0m' %self.name)
        time.sleep(2)

        mutexA.acquire()
        print('33[44m%s 拿到A锁33[0m' %self.name)
        mutexA.release()

        mutexB.release()

if __name__ == '__main__':
    for i in range(10):
        t=MyThread()
        t.start()

'''
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁
然后就卡住,死锁了
'''

解决死锁的方法

避免产生死锁的方法就是用递归锁,在python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire(获得锁)的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release(释放)后,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,就不会发生死锁的现象了。

mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止。

    我们大多数的时候使用多线程,以及多进程,但是python中由于GIL全局解释器锁的原因,python的多线程并没有真的实现

五、协程

协程:是单线程下的并发,又称微线程、纤程,英文名:Coroutine协程是一种用户态的轻量级线程,协程是由用户程序自己控制调度的。

需要强调的是:

1. python的线程属于内核级别的,即由操作系统控制调度(如单线程一旦遇到io就被迫交出cpu执行权限,切换其他线程运行)

  1. 单线程内开启协程,一旦遇到io,从应用程序级别(而非操作系统)控制切换

对比操作系统控制线程的切换,用户在单线程内控制协程的切换,优点如下:

1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级

  1. 单线程内就可以实现并发的效果,最大限度地利用cpu。

要实现协程,关键在于用户程序自己控制程序切换,切换之前必须由用户程序自己保存协程上一次调用时的状态,如此,每次重新调用时,能够从上次的位置继续执行

(详细的:协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈)

      实际上,python在执行多线程的时候,是通过GIL锁,进行上下文切换线程执行,每次真实只有一个线程在运行。所以上边才说,没有真的实现多现程。

1.3.3 练习

练习一:利用多线程,实现socket 并发连接
服务端:

from threading import Thread
from socket import *
import os

tcpsock = socket(AF_INET,SOCK_STREAM)
tcpsock.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
tcpsock.bind(("127.0.0.1",60000))
tcpsock.listen(5)

def work(conn,addr):
    while True:
        try:
            data = conn.recv(1024)
            print(os.getpid(),addr,data.decode("utf-8"))
            conn.send(data.upper())
        except Exception:
            break

if __name__ == '__main__':
    while True:
        conn,addr = tcpsock.accept()
        t = Thread(target=work,args=(conn,addr))
        t.start()

"""
开启了4个客户端
服务器端输出:
13800 ('127.0.0.1', 63164) asdf
13800 ('127.0.0.1', 63149) asdf
13800 ('127.0.0.1', 63154) adsf
13800 ('127.0.0.1', 63159) asdf

可以看出每个线程的PID都是一样的。
""

客户端:

from socket import *

tcpsock = socket(AF_INET,SOCK_STREAM)
tcpsock.connect(("127.0.0.1",60000))

while True:
    msg = input(">>: ").strip()
    if not msg:continue
    tcpsock.send(msg.encode("utf-8"))
    data = tcpsock.recv(1024)
    print(data.decode("utf-8"))

练习二:有三个任务,一个接收用户输入,一个将用户输入的内容格式化成大写,一个将格式化后的结果存入文件。

from threading import Thread

recv_l = []
format_l = []

def Recv():
    while True:
        inp = input(">>: ").strip()
        if not inp:continue
        recv_l.append(inp)

def Format():
    while True:
        if recv_l:
            res = recv_l.pop()
            format_l.append(res.upper())

def Save(filename):
    while True:
        if format_l:
            with open(filename,"a",encoding="utf-8") as f:
                res = format_l.pop()
                f.write("%sn" %res)

if __name__ == '__main__':
    t1 = Thread(target=Recv)
    t2 = Thread(target=Format)
    t3 = Thread(target=Save,args=("db.txt",))
    t1.start()
    t2.start()
    t3.start()
上一篇:Python入门笔记02 下一篇:没有了